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ARTICLE

A New Method for Detecting Human Recombination Hotspots
and Its Applications to the HapMap ENCODE Data
Jun Li, Michael Q. Zhang, and Xuegong Zhang

Computational detection of recombination hotspots from population polymorphism data is important both for under-
standing the nature of recombination and for applications such as association studies. We propose a new method for
this task based on a multiple-hotspot model and an (approximate) log-likelihood ratio test. A truncated, weighted pairwise
log-likelihood is introduced and applied to the calculation of the log-likelihood ratio, and a forward-selection procedure
is adopted to search for the optimal hotspot predictions. The method shows a relatively high power with a low false-
positive rate in detecting multiple hotspots in simulation data and has a performance comparable to the best results of
leading computational methods in experimental data for which recombination hotspots have been characterized by
sperm-typing experiments. The method can be applied to both phased and unphased data directly, with a very fast
computational speed. We applied the method to the 10 500-kb regions of the HapMap ENCODE data and found 172
hotspots among the three populations, with average hotspot width of 2.4 kb. By comparisons with the simulation data,
we found some evidence that hotspots are not all identical across populations. The correlations between detected hotspots
and several genomic characteristics were examined. In particular, we observed that DNaseI-hypersensitive sites are en-
riched in hotspots, suggesting the existence of human b hotspots similar to those found in yeast.
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Meiotic recombination is one of the major sources of ge-
netic diversity. It has been observed that the occurrence
of meiotic recombination in the human genome (and
some other genomes) is not uniform, but rather there are
regions called “hotspots” (usually 1–2 kb in width) where
the frequency of recombination is 10 to several thousand
times higher than the average in the background, and
almost all recombination events happen within them.1–6

Recent studies have shown that hotspots are a ubiquitous
feature of the human genome,7,8 and recombination hot-
spots are also the main contributor of the block-like pat-
tern of haplotypes.9 Characterizing these hotspots is of
critical importance for understanding molecular mecha-
nisms of meiotic recombination and for designing better
strategies in association studies of complex diseases.10–16

Pedigree analysis can only specify recombination rate on
a megabase scale, because of the small number of recom-
bination events that can be observed within a few gen-
erations. The first fine-scale description of human recom-
bination hotspots was achieved with the sperm-typing
technique,1–3 which types millions of sperm that contain
hundreds of recombination events in the studied region
(often ∼10 kb). The resolution of sperm typing is very
high, but it is costly and laborious, so it is not yet practical
for application to long genomic segments, and it cannot
provide any information about females. Up to now, !20
hotspots have been characterized by sperm-typing exper-
iments, and genomewide fine-scale investigations in hu-
mans have largely relied on computational analysis of
population polymorphism data.7,8

The problem of estimating a constant recombination
rate from population polymorphism data has been inten-
sively studied in recent years.17,18 Among the many pos-
sible methods, likelihood-based methods are the most
widely accepted. The basic idea is to search for a recom-
bination rate that maximizes the likelihood of obtaining
the observed phased (haplotype) or unphased (genotype)
data from the population under the coalescent model.19

Some methods use all information contained in the data
to calculate the full likelihood, which is accurate but ex-
tremely expensive to compute.20–22 Other methods use par-
tial data to calculate approximate likelihoods.23–26 These
likelihoods can approximate the full likelihood well if the
methods are designed properly.27

Since a constant recombination rate is rarely the case
in the genome, detecting recombination hotspots is more
challenging. Zhang et al.28 proposed a nonparametric
method based on haplotype-block partitioning, which is
computationally effective but cannot give high-resolution
prediction of hotspot locations. For more-precise predic-
tions, three major parametric methods based on coales-
cent models have been developed. Their common basic
idea is to compare approximate likelihoods under models
with and without hotspot(s). The three methods use dif-
ferent approximations of the full likelihood. The LDhot
method7 uses a pairwise likelihood that is the product of
two-locus likelihoods of all pairs of segregating sites. The
Hotspotter method26 defines another kind of likelihood,
constructed by multiplying the approximate conditional
likelihoods of each haplotype in a specific order. The
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method by Fearnhead et al.29 and its improved version30

divide a studied region into small subregions and calculate
a composite likelihood by multiplying full likelihoods of
all subregions.

These three parametric methods are differentiated by
their ability to detect multiple hotspots in a genomic seg-
ment, the data types to which they can be applied, and
the speed of calculation. Both LDhot and Hotspotter as-
sume no more than one hotspot in the studied region,
whereas the methods of Fearnhead et al. are able to detect
multiple hotspots in a region. Hotspotter and the methods
of Fearnhead et al. require phased data, so users need to
do haplotype inference first, since almost all available
polymorphism data are unphased (Hotspotter has been
integrated into the PHASE26,31–33 program to deal with un-
phased data). LDhot can be applied to both unphased and
phased data directly. The computational costs of these
three methods are also quite different. LDhot is very fast
because of the use of the pairwise likelihood; therefore, it
can be applied to the whole genome.8 The methods of
Fearnhead et al. are much slower, since they calculate the
full likelihood in each of the subregions. Hence, it is very
costly to apply them to genome-scale data. The speed of
Hotspotter lies between those of LDhot and the methods
of Fearnhead et al.

The three parametric methods had been compared on
a 206-kb region on human chromosome 1 near the highly
variable minisatellite MS32, where the fine-scale recom-
bination-rate variation has been analyzed by sperm-typing
experiments.5 Of the eight hotspots detected by sperm-
typing, LDhot detected four, with no false-positive result;
Hotspotter detected five but gave three false-positive pre-
dictions; and the first method of Fearnhead et al. detected
seven, with only one false-positive prediction, which
shows the highest power for this data set.

The major limitations of the methods of Fearnhead et
al. are their high computing cost and their inability to
directly handle unphased data. To make the method more
practical and flexible, we propose, in this article, a new
method for hotspot detection. Our method uses a trun-
cated, weighted pairwise log-likelihood (TWPLL) and can
be applied to both phased and unphased data with a very
fast computational speed. In simulation data, our method
shows a high power to detect multiple hotspots, with a
considerably low false-positive rate. In the two regions of
the human genome where sperm-typing data have been
reported, our method gets comparable or even better re-
sults than the best results obtained by all those other lead-
ing computational methods. We applied the method to
the 10 human genome regions known as the HapMap
ENCODE regions and identified 172 hotspots that exist in
at least one of the three populations.

Nowadays, the mechanism of meiotic recombination is
still poorly understood in higher eukaryotes.34–36 We stud-
ied the molecular features of the predicted hotspots in the
HapMap ENCODE regions and observed correlations of
hotspots with some genomic features. In particular, we

observed that DNaseI-hypersensitive sites (DHSSs) are en-
riched in hotspots. This is a strong sign that there are b

hotspots in the human genome similar to those identified
in yeast.

Material and Methods
Data

We applied our method to the HapMap ENCODE data as a prac-
tical application. The pilot phase of the ENCODE Project focuses
on a specified 1% (∼30 Mb) of the human genome, aiming to
identify all functional elements in the regions. Some of these
regions (known as the HapMap ENCODE regions) have been ge-
notyped by HapMap Centers, and contain 10 genomic segments
(500 kb each) from seven chromosomes. The data were genotyped
in four populations: Utah residents with northern and western
European ancestry (CEU), Han Chinese in Beijing (CHB), Japanese
in Tokyo (JPT), and Yoruba in Ibadan, Nigeria (YRI), with diploid
population sizes of 90, 45, 44, and 90, respectively. To balance
sample size in our experiments, we combined the two East Asian
populations (CHB and JPT) into one group and called it “ASI.”
Almost all SNPs in these regions have been genotyped. Only those
markers with minor-allele frequency (MAF) 10.05 were used to
infer hotspots.

After hotspot detection, some genomic features of the HapMap
ENCODE regions were downloaded from the ENCODE Project at
UCSC Web site to investigate their possible correlations with hot-
spot locations. These data include DNA sequences, RefSeq genes,
CpG islands, repeats, and DHSSs. The total sequence length of
the regions is 5 Mb, and we use the sequences to calculate the
G�C content. There are 70 CpG islands in these regions, with
an average length ∼0.9 kb. Repeats were identified by use of the
RepeatMasker software and the repeat libraries available, and they
cover 45.6% of the 5-Mb region. Among the ∼30 repeat families,
7 of them (Alu, L1, MIR, Simple_repeat, L2, Low_complexity, and
MaLR) occur 1500 times in the studied regions. A total of 56
RefSeq genes are found in the studied regions. These gene areas
(counted from 1 kb upstream of 5′ sites of the first exons to 1 kb
downstream of 3′ sites of the last exons) cover ∼39% of the 5-Mb
region. DHSSs are associated with all kinds of gene regulatory
regions, including enhancers, silencers, promoters, insulators,
and locus-control regions.37 The available data are from four
groups: (1) DHSSs identified by DNase-chip in the GM06990 lym-
phoblastoid cell line, (2) DHSSs identified by DNase-chip in the
nonactivated CD4� T cells, (3) DHSSs identified by massively par-
allel signature sequencing (MPSS) in the nonactivated CD4� T
cells, and (4) DHSSs identified by MPSS in the activated CD4� T
cells. Among these four groups, 144, 143, 26, and 30 DHSSs were
identified in the 5-Mb region, and their average length is ∼0.29
kb. More detailed description about these genomic features can
be found at the ENCODE Project at UCSC.

The Pairwise Log-Likelihood (PLL)

Suppose there are S segregating sites in the studied segment, and
the recombination rate between site i and site j is . We userij

to denote the two-locus likelihood between site i and siteL (r )ij ij

j, defined as the probability of observing the sample configuration
at these two sites in the data, given . This can be easily calculatedrij

according to the definition of recombination rate at the two sites.
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Figure 1. Subregions covering a hotspot in different log-likelihoods. In each panel, the example region (green bar) contains six
segregating sites (blue circles), with a hotspot (red bar) located between a pair of sites. The purple lines indicate the subregions between
pairs of sites that cover the hotspot in the log-likelihood. A, With PLL, the hotspot located between the third and fourth sites is
covered by nine subregions. B, With PLL, the hotspot located between the second and third sites is covered by eight subregions. C,
With TWPLL, the hotspot located between the third and fourth sites is covered by three subregions. D, With TWPLL, the hotspot located
between the second and third sites is also covered by three subregions. The number of subregions covering a hotspot depends on the
location of the hotspot in PLL, whereas it does not in TWPLL.

The pairwise likelihood is defined as the product of all pairs of
sites in the segment,

S S�1

L(r) p L (r ) ,� � ij ij
jpi�1 ip1

and the PLL is defined as

S S�1

l(r) p logL(r) p logL (r ) .� � ij ij
jpi�1 ip1

There are several advantages of using this likelihood. Since like-
lihoods of all possible sample configurations at any two sites for
a given sample size can be calculated beforehand and stored in
a lookup table, calculation of PLL can be extremely fast. Moreover,
PLL can be applied to both phased and unphased data directly,
since two-locus likelihoods for unphased pairs can be inferred
straightforwardly from those of phased pairs.23 In addition, when
two-locus likelihoods are calculated, it is convenient to use dif-
ferent recombination models, such as gene conversion,25,38 or to
calculate under a finite-site mutation model.25 The recombination
rate of a region can be estimated as the rate that maximizes the
pairwise likelihood. Smith and Fearnhead27 have shown that it is
one of the most accurate methods for estimating a uniform re-
combination rate. When applied to a region with variable recom-
bination rates, the estimated rate will be the average rate across
the region.

Recombination hotspots can be detected using the likelihood
by investigating whether a model with hotspot(s) can produce a
higher likelihood of the data than can the uniform-rate model.

This can be done by studying the log-likelihood ratio (LLR) of
the two models, defined as the log ratio of the likelihood under
the model with hotspots to that under the model without hot-
spots. However, there is a problem if we use PLL for this purpose.
Indeed, the PLL is defined on likelihoods of pairs ofS(S � 1)/2
segregating sites. Suppose there is a hotspot located between the
th and th segregating sites; then, this hotspot region willi (i � 1)

affect terms in the PLL. A simple example with isi(S � i) S p 6
illustrated in figure 1A and 1B. Note that depends on thei(S � i)
location i, such that it first ascends and then descends with i.
Hotspots at different locations in the studied segment will have
unequal effects on the likelihood, and hotspots near the center
of the segment are more likely to be detected. This will cause a
loss of detection power and will also lead to bias in the discovery
of hotspots.

The TWPLL

The idea of a weighted PLL that was introduced by Fearnhead39

makes it possible to define a likelihood that is unrelated to the
location of hotspots. It was originally defined as

S�i S�1

l (r) p w logL (r ) , (1)��w k i,i�k i,i�k
kp1 ip1

where , , are a set of weights decreasing inw � 0 k p 1, … ,S � 1k

k. If we assign for , weighted PLL will de-w p 1 k p 1, … ,S � 1k

generate into PLL. Weighted PLL was suggested for the estimation
of uniform recombination rates.39 We adopt the idea for esti-
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mation of recombination models with hotspots. In our method,
we define the weights in equation (1) as

q if k � Nkw pk {0 otherwise

and call it the “TWPLL,” where N is the number of segregating
sites in the effective neighborhood region (usually ). By de-N K S
fining the distance of two segregating sites as the number of seg-
regating sites between them, only the pairwise likelihoods of pairs
of segregating sites with distance no more than are con-N � 1
sidered in calculation of the pairwise likelihood. In our experi-
ments, we use . The should decrease with k, but, cur-N p 7 qk

rently, the optimal choice of is still unclear.39 We setq q pk k

, , according to experiments on simulation data,1/k k p 1, … ,N
with special attention paid to the balance between precision in
detecting hotspot boundaries and sensitivity to noise. With this
truncated, weighted pairwise likelihood, for any N � i � S �

, a hotspot located between any site i and the site willN � 1 i � 1
be considered times in equation (1). SinceN(N � 1)/2 N(N �

is unrelated to i, it is equally possible to detect hotspots1)/2
located at different positions. Figure 1C and 1D illustrates the
effect of the TWPLL in the simplified example. Only hotspots at
the boundaries of the region ( or ) are not evenlyi ! N i 1 S � N � 1
covered. They usually compose a very small proportion of the
region, because , and we will introduce a compensation forN K S
the boundaries when searching for the solutions (see “The Search-
ing Strategy” section).

The Recombination-Rate Model

The models used by LDhot7 and Hotspotter26 are all restricted,
with at most one hotspot in a data segment. We use a recom-
bination-rate model that allows for multiple hotspots in each
studied segment as did the one Fearnhead et al. used.30 The re-
combination rate as a function of the location x in a region is
called the “recombination surface,” denoted . A multiple hot-r(x)
spot model has the form

r for s � x � e1 1 1

_ _
r(x) p ,

r for s � x � eh h h{
r otherwiseb

where h is the number of hotspots in the region and the kth
hotspot extends from position to . Any hotspot does nots ek k

overlap with or touch the other hotspots. The recombination
rates for hotspots are , respectively, and the backgroundr , … ,r1 h

rate of the region is .rb

The Searching Strategy

After defining TWPLL, we need to search for the recombination
surface that maximizes the likelihood of the data. We adopted
the standard forward-selection procedure to search for the solu-
tion. The procedure starts with a model of no hotspot in the
region and adds hotspots one by one if adding them increases
the likelihood by no less than an LLR threshold T, which is de-
cided by simulation. The searching procedures are as follows:

Step 1. Assume no hotspot in the region and estimate an av-
erage recombination rate as the initial by maxi-r(x)
mizing the likelihood.

Step 2. Consider all potential hotspot positions, given the cur-
rent recombination surface . For each potential hot-r(x)
spot, use the following steps to find the best-fit model:
(a) Reestimate the background recombination rate that

maximizes the likelihood after exclusion of the po-
tential hotspot under current consideration and all
hotspots that are already accepted. The recombi-
nation surface under this reestimated background
rate and accepted hotspots is denoted as .′r (x)

(b) Assume the current potential hotspot is a real hot-
spot. Estimate its intensity (recombination rate of
the hotspot) that maximizes the likelihood of the
whole region. Add this hotspot to the surface

to get a new surface, .′ ′′r (x) r (x)
(c) Calculate LLR, which is the likelihood under ′′r (x)

subtracted by the likelihood under . If the po-′r (x)
tential hotspot is at one of the boundaries of the
studied region, its LLR is amplified by a factor de-
pending on the number of subregions that cover
the hotspot, to compensate for its insufficient rep-
resentation in the likelihood. This set of factors is
decided with simulation experiments.

Step 3. After checking all potential hotspots in step 2, find the
one that gives the highest LLR. If this LLR is �T, accept
this potential hotspot, refresh the recombination sur-
face, update the set of all potential hotspots, and go to
step 2. Otherwise, stop the searching procedures.

In the above procedures, the set of all potential hotspots is
collected in the following way. From the beginning of the region,
consider every 200-bp position as a possible starting position of
a hotspot, if the position is not at a hotspot already detected.
From each of these starting positions, we generate a set of po-
tential hotspots with lengths varying from 800 bp to 2.4 kb, with
a 200-bp step length. If any potential hotspot thus generated
overlaps with or touches any of the hotspots that are already
accepted in the prediction, we remove this potential hotspot. This
setting considers all possible hotspots of lengths from 800 bp to
2.4 kb, at a resolution of 200 bp.

When we estimate the background rate in step 2(a), some
regions are excluded in advance, to avoid estimation of back-
ground rates that are too high. For this, we first slide a window
of four adjacent SNPs along the whole region and estimate the
average recombination rate in each window. If the rate is 110
times the genome average, the sites in this window will not be
used for estimating the background rate. A similar strategy was
also used by Fearnhead et al.30

It should be noted that the above procedure may not reach the
global optimum solution, since it is a greedy forward-selection
method. However, since the TWPLL only considers two-locus like-
lihoods between pairs of segregating sites with distance !N, hot-
spots will be independent with respect to the TWPLL if they are
apart from each other by more than this distance. Therefore, if
the distances between hotspots are 1N, the greedy searching
method can reach the global optimum. When two hotspots are
very close to each other—for example, when there are only one
or two sites between them—our method will tend to detect them
as one larger hotspot. Considering that the average density of
SNPs (with MAF 10.05) in the human genome is denser than 1
per kb and that the estimated average density of recombination
hotspots is ∼1 hotspot per 50 kb,8 global optimum can be reached
with this forward-searching strategy in most situations.
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The whole method is implemented in a package named
“HotspotFisher” that is written in C�� and works on different
operation systems. The software is available at Jun Li’s Web site.

Coalescent Simulations

Simulation data based on coalescent models are used for tuning
some parameters and for assessing the performance of the
method. We used the Cosi program40 to simulate polymorphism
data. Cosi is conceptually similar to Richard Hudson’s widely used
program,41 but it has the extra benefit of allowing variable re-
combination rates—users can set multiple hotspots with different
densities and at arbitrary locations. Moreover, Cosi calibrates pop-
ulation genetic models with genomewide data and provides users
with four detailed human demographic histories that take into
consideration events like population splits, admixture, changes
in size, bottlenecks, and migration. These four populations in-
clude a European population, an Asian population, an African
population, and an African American population. We used the
first three, since they correspond to the CEU, ASI, and YRI pop-
ulations in the HapMap ENCODE data.

In most published work on hotspot inference, simulation data
were designed such that there is only one hotspot in one data
segment.7,26,29,30 In the study by Zhang et al.,28 multiple hotspots
in single segments were simulated, but their locations were fixed
and equally spaced, and hotspot widths and intensities were also
fixed. To make the simulation data more like the real situation,
we simulated long genome regions (200 kb) with multiple hot-
spots at random locations, with variable widths and intensities.
We use our method to estimate the locations of these variable
hotspots. The detailed model is as follows:

(1) The length of each simulated data region is 200 kb. The ex-
pected average recombination rate in the simulated segments
is set as 1.2 cM/Mb, the same as the human genome average.42

(2) On each simulated region, a proportion p of recombination
events are expected to happen within hotspots. For conven-
ience, we call this proportion the “hotspot quotient” (HQ).
Sperm-typing analysis showed that 190% of recombination
events in the human genome occur within hotspots (HQ 1

90%), and the background recombination rate can be as low
as 0.04 cM/Mb.3,5 We use two HQ values (90% and 70%) in
the simulation, to study the performance of the proposed
method under different conditions. These two settings give
background recombination rates of 0.12 cM/Mb and 0.36 cM/
Mb. The model with HQ p 90% is consistent with the results
from sperm-typing experiments and appears to be consistent
with our results for the 10 HapMap ENCODE regions. The
model with HQ p 70% is at the lower end of what is observed
for the human genome.7,8

(3) The spacing between hotspot centers fits an exponential dis-
tribution with the mean of 50 kb, as the suggested average
across the whole genome.8 We also restrict the spacing be-
tween two hotspot centers to be not less than 2 kb.

(4) The width of hotspots follows a uniform distribution of 1–2
kb. This is in accordance with existing observations of
hotspots.3,5

(5) The accumulated intensity (defined as the product of the in-
tensity and the width of the hotspot) of each hotspot follows
a gamma distribution, with gamma equal to 3 and the mean
determined by parameters given in (1), (2), and (3) above.
This distribution is chosen arbitrarily, because there is little
knowledge about the true distribution of hotspot densities.

The hotspot intensity of each hotspot is calculated from its
accumulated intensity and width, and, if the resulting inten-
sity is !10 times the background, this hotspot is discarded
from the model and replaced by a new one.

We simulated six data sets. Each data set consists of 100 groups
of data for estimating the false-positive rate and power, and each
group consists of 90 diploid samples, so that the sample size is
the same as for the HapMap ENCODE data. Every 90 diploid
samples were obtained by combining 180 haplotypes randomly.
Data sets 1, 2, and 3 all have HQ p 90% and are generated with
the European, Asian, and African demographic histories, respec-
tively. Data sets 4, 5, and 6 have HQ p 70% and are also generated
with the three population histories. In the calibrated model of
Schaffer et al.,40 gene-conversion rate is set at per bp�94.5 # 10
per generation, with a tract length of 500 bp for all gene-con-
version events. This is also what we used in our simulation. Cosi
assumes an infinite-sites model of mutation, and mutation po-
sitions are converted into discrete base-pair positions. A constant
mutation rate of per bp per generation was chosen in�81.0 # 10
our models, so that the average density of SNPs in our simulation
data is the same as that in the HapMap ENCODE data.

Results
Hotspot Detection in Simulation Data

We applied our method to each group of the simulation
data. The same lookup table was used for the pairwise
likelihood in all the experiments. The original table for
192 haplotypes was downloaded from the LDhat version
2.0 (a package for recombination-rate analysis7) Web site,
and we used the lkgen function in LDhat version 2.0 to
convert it to a table for 180 haplotypes. The false-positive
rate and power of the hotspot detection were assessed with
the simulation experiments. If a detected hotspot overlaps
with a hotspot built in the model, we regard it as a true-
positive prediction; otherwise, we regard it as a false-pos-
itive prediction. Here, we define the false-positive rate as
the expected number of false-positive results per Mb and
define the power as the proportion of hotspots in the mod-
els that are detected by the algorithm.

The LLR threshold T was first estimated on the basis of
a given false-positive rate with the data under HQ p

. It was observed that the false-positive rates are very90%
similar under the two HQ values at the same T values.
This is an important property, as it indicates that the same
T can be used regardless of the background rate. Finally,

was chosen for all the experiments, which limitsT p 26
the expected false-positives in a 200-kb region to be no
more than 0.08, or, equivalently, the false-positive rate is
no more than 0.4 per Mb. The results for the simulation
data with are shown in table 1. With this setting,T p 26
in the total 5 Mb of HapMap ENCODE data, the expected
number of false-positive predictions in each population
will be no more than 2.

Table 1 also shows the power reached with different
groups of simulation data. It can be seen that almost the
same power was reached in different populations, indi-
cating that the method is not sensitive to the population
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Table 1. Hotspot Prediction Performance on Simulation Data ( )T p 26

Population

HQ p 90% HQ p 70%

CEU ASI YRI Totala CEU ASI YRI Totala

No. of false-positive resultsb 8 5 2 13 3 8 2 13
Power (%)c 69 66 66 87 38 37 35 58
Average position offset (bp)d 360 376 309 … 351 345 258 …
Center coverage (%)e 94 96 98 … 96 98 100 …

a The number of hotspots detected in at least one of the populations.
b The total number of false-positive predictions in all 100 segments (200 kb each).
c The percentage of true hotspots in the models that are correctly detected.
d Average offset from the predicted start and end sites to the real start and end sites.
e Percentage of predicted hotspots that cover centers of corresponding true hotspots in

the models.

history. With the model of HQ p 90%, the average power
for the three populations is as high as 0.67, but, with HQ
p 70%, the power decreases to ∼0.37. This indicates that
HQ is a major factor that affects the prediction power; the
higher the HQ is, the higher the power is. On the human
genome, HQ is estimated to be around or more than 90%,
according to sperm-typing experiments3,5 as well as our
calculation for the HapMap ENCODE data described be-
low. Some hotspots in the simulation data are not detected
in all populations. If we combine the hotspots detected
in the three populations together, the power is even higher
(0.87 for HQ p 90% and 0.58 for HQ p 70%), whereas
the false-positive rate still maintains a low level of 0.65
per Mb, or 3.25 false-positive predictions in a 5-Mb region.

We further examined the accuracy of the hotspot lo-
cations that we detected. As shown in table 1, the mean
offsets from the predicted start and end locations to the
corresponding precise locations in the simulation models
are ∼310–380 bp when HQ p 90% and 250–350 bp when
HQ p 70%. More than 94% of predicted hotspots cover
the center of the corresponding hotspots in the models.

Finally, we examined whether our method is sensitive
to some hotspot properties, such as hotspot intensities,
hotspot widths, SNP densities in hotspots, and SNP MAFs
in hotspots. Spearman’s rank correlation coefficients were
calculated between each of them and the detection of hot-
spots (table 2). Hotspot intensities, SNP densities in hot-
spots, and SNP MAFs in hotspots were weakly but signif-
icantly correlated with their detection, suggesting that
stronger hotspots with denser SNPs and higher-MAF SNPs
inside are easier to detect. Hotspot widths are uncorrelated
with the detection of hotspots.

Hotspot Detection for Experimentally Verified Human
Hotspots

To date, there are only two human genome regions for
which multiple recombination hotspots have been char-
acterized by sperm-typing experiments. One is a 216-kb
segment of the class II region of the major histocompat-
ibility complex (MHC) on chromosome 6, where six hot-
spots were found by experiments3; the other is a 206-kb
segment on chromosome 1 near the highly variable mini-
satellite MS32, where eight hotspots were reported.5 We

used these two data sets to validate our method. The first
data set contains 247 SNP sites ( ) of 50 diploidMAF 1 0.05
samples, and the second data set contains 191 SNP sites
( ) of 80 diploid samples. We used the diploidMAF 1 0.05
data directly. All parameters in our method were set to be
the same as in the simulation experiments.

In the first region, our method detected seven hotspots,
which included all six true hotspots and an additional one
at ∼6.5 kb downstream from the 3′ end of the TAP2 hot-
spot (fig. 2A). The original sperm-typing data were unin-
formative about recombination in the 3′ end of the TAP2
hotspot (the area indicated by a question mark in fig. 2A),
and it was conjectured by Jeffreys et al.3 that the TAP2
hotspot might be part of a cluster. Fearnhead et al.29 and
Zhang et al.28 also applied their methods to this data set.
Fearnhead et al. found eight hotspots, including all six
true hotspots, a hotspot downstream from the TAP2 hot-
spot, and an extra hotspot not supported by the sperm-
typing experiment.29 Zhang et al. predicted four putative
hotspot regions in this data, covering all the known hot-
spots, and their result also suggested a hotspot down-
stream from the TAP2 hotspot.28

In the second region, our method correctly detected six
true hotspots with no false-positive predictions (fig. 2B).
Only two hotspots (NID2b and MSTM1a) were missed in
the detection. The NID2b hotspot lies almost entirely
within a region of intense marker association, so it is ex-
pected that coalescent-based methods would not detect
it.5 The other hotspot we missed, MSTM1a, was reported
to be historically weak and a candidate for a young hot-
spot.43 It lies very close to a historically strong hotspot,
MSTM1b—their centers are only 2.0 kb apart.5 As men-
tioned in our introduction, the methods of Fearnhead et
al. showed highest power on this data set among the cur-
rently available methods.5 It found the six hotspots we
detected plus the MSTM1a hotspot, but it made a false-
positive prediction between MSTM1b and MSTM2.

In total, our method detected 12 of 14 true hotspots,
with zero false-positive results, in these two regions (not
considering the putative hotspot in the 3′ region of the
TAP2 hotspot). The average offset from the predicted start
and end locations to the corresponding true locations de-
cided by the experiments is 409 bp. All predicted hotspots
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Table 2. Spearman’s Rank Correlation Coefficients (SCCs) between the
Detection of Hotspots and Their Properties

Population

HQ p 90% HQ p 70%

CEU ASI YRI CEU ASI YRI

SCC with hotspot intensity .35a .34a .34a .30a .29a .34a

SCC with hotspot width .06 �.01 .05 �.01 �.00 �.01
SCC with SNP density in hotspots .30a .27a .40a .42a .45a .50a

SCC with SNP MAF in hotspots .35a .35a .41a .32a .37a .40a

a Tested significant ( ). In calculating the coefficients, we assigned a 1 if aP ! .05
hotspot was detected, and a 0 if it was not.

cover the centers of the true hotspots. The performance
is consistent with that for the simulation data with HQ p
90%.

Hotspot Detection in the HapMap ENCODE Regions

We applied our method to the HapMap ENCODE regions
with the same set of parameters as in the simulation and
validation experiments, and we used unphased data di-
rectly. Within the 10 500-kb regions, we detected 88, 110,
and 87 hotspots in the CEU, ASI, and YRI populations,
respectively. This gives us a total of 172 hotspots (or hot-
spot clusters, defined as sets of hotspots that overlap across
populations) that occur in at least one population. The
hotspot positions are listed in table 3. The widths of de-
tected hotspots (or hotspot clusters) range from 0.8 kb to
9.8 kb, with average of 2.4 kb, covering ∼8.14% of the
studied regions. We downloaded hotspots estimated by
LDhot from the ENCODE Project at UCSC, which are also
a combination of predictions in the three populations.
LDhot reported 95 hotspots (or hotspot clusters) with
widths ranging from 2.75 to 16.25 kb, with an average of
4.9 kb. This suggests that the hotspots we identified are
at a finer scale, and one hotspot (or hotspot cluster) iden-
tified by LDhot may contain several hotspots that we
found. The overlapping of the two sets of predicted hot-
spots (or hotspot clusters) is 75 of the 95 predictions by
the LDhot hotspots and 82 of the 172 predictions by our
method.

According to the simulation results, our method is not
sensitive to population histories, so the possible discrep-
ancy between the real histories and the histories estimated
by Schaffner et al.40 will not lower the power significantly.
The power of our method is mainly determined by the
background recombination rate. We compared the esti-
mated background rate (after detecting hotspots) in the
simulation data and in the HapMap ENCODE data. From
the results shown in table 4, it can be observed that the
average background rates of the HapMap ENCODE regions
are similar to those of simulation data with HQ p 90%
and are much lower than those of the simulation data
with . This suggests that the power of ourHQ p 70%
method for the HapMap ENCODE data is comparable to
the power (67%) in the simulation data with .HQ p 90%
In addition, the estimated background recombination
rates of the two regions by sperm-typing experiments (all

from the CEU population) are 0.087 and 0.120, which are
similar to those of the ENCODE regions. The high power
(∼86%) achieved for those data also suggests a high power
in the ENCODE regions.

Some of the hotspots are not discovered in all popula-
tions. Figure 3 shows the numbers of hotspots detected
in one, two, and all three populations in the HapMap
ENCODE data and those detected in the three populations
in simulation data with HQ p 90%. We observe that, com-
pared with the simulation (in which the three populations
have exactly the same hotspots), there are more hotspots
in the HapMap ENCODE data that are found only in one
population, and there are fewer hotspots that are found
in all three populations. This discrepancy is significant by
the test ( ), showing a systematic difference2 �5x P ! 1 # 10
between the simulation data and HapMap ENCODE data.
We checked known factors that may affect the power of
the method, SNP density and SNP MAF, and found no
evidence that they cause this difference. There has been
a long discussion about whether recombination-rate var-
iations are the same across human populations.26,30,44,45 If
we assume that the recombination rate model and other
assumptions underlying the simulation are appropriate for
the ENCODE data, the fact that significantly more pop-
ulation-specific hotspots are observed in the real data
might be viewed as evidence that the presence of hotspots
is not identical in the three populations on the basis of
the current data. However, some other possibilities, such
as inconsistent intensities of the hotspots in the three pop-
ulations, may also explain the observed low consensus
between the populations.

Correlation between Hotspot Positions and Genomic Features

Many sequence and gene-related features have been re-
ported to be significantly correlated with hotspot posi-
tions at different scales, from several megabases to as fine
as ∼5 kb.8,42,46,47 On the basis of the 172 hotspots we pre-
dicted with the HapMap ENCODE data, we investigated
the possible correlation of hotspot positions with some
major sequence factors and gene annotations. This was
done by comparing the distributions of the major factors
inside and outside the predicted hotspots, and a signifi-
cant difference in the distributions may indicate correla-
tion of the factor with the hotspots. The significance was
tested with random permutations. First, the occurrence
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Table 3. Hotspots Detected in the
HapMap ENCODE Region

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure 2. Hotspot detection in the two genomic regions where sperm-typing data are available. The blue lines are the recombination
surface we estimated, and peaks in the line are recombination hotspots detected. The centers of true hotspots are shown by red dashed
lines. A, The 216-kb segment of the class II region of the MHC. From left to right, the true hotspots are DNA1, DNA2, DNA3, DMB1,
DMB2, and TAP2, and the question mark (?) indicates the hotspot that was not observed in sperm-typing experiments but that was
conjectured by Jeffreys et al.3 and predicted computationally.28,29 These hotspots were all detected with our method, in the following
order TAP2 ( ), DNA3 ( ), DMB2 ( ), DMB1 ( ), DNA2 ( ), DNA1 ( ), andLLR p 141.4 LLR p 137.2 LLR p 99.5 LLR p 67.6 LLR p 43.6 LLR p 30.9
“?” ( ). B, The 206-kb segment on chromosome 1. From left to right, the true hotspots are NID3, NID2a, NID2b, NID1, MS32,LLR p 29.3
MSTM1a, MSTM1b, and MSTM2.5 We detected six of them, in the following order: NID1 ( ), NID2a ( ), MSTM2LLR p 77.0 LLR p 75.3
( ), MS32 ( ), MSTM1b ( ), and NID3 ( ). In both groups of data, every hotspot we detectedLLR p 58.4 LLR p 41.5 LLR p 36.4 LLR p 30.1
contains the center of its corresponding true hotspot.

(for discrete features) or average (for continuous features)
of a feature in the detected hotspots was counted. Then,
we did permutation by randomly relocating the “hot-
spots” (without changing their widths) within the whole
5-Mb region, keeping in mind that they do not overlap
or touch, and counted the occurrence or average of the
feature in the permuted “hotspots.” This procedure was
done 10,000 times to get the null distribution of the oc-
currence or average of the feature in the permuted hot-
spots. The occurrence or average in the true detected hot-
spots was compared with this null distribution to calculate
the P value of observing the occurrence or average solely
by chance. If the true occurrence or average was signifi-
cantly larger or smaller than that in the permuted hot-
spots, we inferred that the feature is enriched or depleted
in hotspots; otherwise, a correlation was not observed.

The features and the test results are listed in table 5. It
can be seen that high G�C content was enriched in hot-
spot regions, consistent with previous reports that hot-
spots have a weak positive correlation with the G�C
content.8,28,42,46,47 Significant correlation with the number

of CpG islands was not observed. The relation with repeats
on the genome was studied by calculating the length of
repeat elements located in hotspots normalized by the
width of the hotspots. We observed that repeats are sig-
nificantly depleted in the predicted hotspots when all
types of repeats are taken as a whole. This observation is
roughly consistent with that in yeast, where Ty elements
(the main family of large dispersed natural repeats) tend
to have very low recombination rates.48 We also studied
each family of repeat elements separately by counting the
number of repeats that overlap with hotspots. Of the seven
most-frequent repeat families that each occur 1500 times
in the whole 5-Mb region, we observed significant en-
richment of Low_complexity, L2, and MIR in hotspots;
significant depletion of L1 in hotspots; and no significant
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Table 4. Estimated Background Recombination
Rate for the Simulation Data and the HapMap
ENCODE Data

Population

Simulation Data

HQ p 90% HQ p 70% ENCODE Data

Mean SEM Mean SEM Mean SEM

CEU .078 .030 .202 .055 .059 .029
ASI .070 .024 .177 .051 .079 .043
YRI .133 .043 .362 .074 .165 .064

Figure 3. Numbers of hotspots detected in one, two, or all three
populations in the simulation study and in the HapMap ENCODE
data. The lengths of bars show the percentage of the hotspots in
all detected hotspots, and the numbers on the bars are the numbers
of hotspots following the corresponding categories. (The numbers
of hotspots detected in all three populations are not the same for
all populations, since there might be two hotspots in one popu-
lations overlapping with single hotspots in other populations.) It
can be observed that, in the HapMap ENCODE data, we detected
significantly smaller proportion of hotspots shared by all three
populations but a larger proportion of hotspots that are detected
only in one population, compared with those detected in the sim-
ulation data.

correlation with Alu, MaLR, and Simple_repeat. These ob-
servations are consistent with those of Myers et al.,8 ex-
cept that they did not observe significant relation with
Low_complexity repeats. We also studied the correlation
of the detected hotspots with gene annotations. Among
the factors we studied, we observed that hotspots tend to
avoid gene regions (from 1 kb upstream of the first exons
to 1 kb downstream of the last exons). Of the 172 pre-
dicted hotspots, 56 are located at �1 kb from annotated
RefSeq genes. Among them, seven hotspots overlap with
the �1-kb areas around annotated transcription start sites.
In yeast, there is a category of a hotspots that occur in
promoter regions and that are related to certain transcrip-
tion factor–binding sites. In humans, a hotspots have
been reported in a small-scale study28 but have not been
found in other studies.8,30 The observation in the current
study does not show the correlation of hotspots with pro-
moters but shows a few examples of hotspots in promoter
regions.

The Existence of Human b Hotspots

It is known that in yeast open chromatin structure is nec-
essary for the formation of double-stranded breaks (DSBs),
which initiate meiotic crossover events.35,36 To investigate
whether such a relationship persists in humans, we cal-
culated the correlation between hotspot positions and
DHSSs, which are strong signals for open chromatin struc-
ture. Among 144, 143, 26, and 30 DHSSs in the four groups
of DHSS data, 26, 24, 4, and 4 overlap with the detected
hotspots, respectively. The lengths of DHSSs are also
very short (∼0.29 kb on average). From the results shown
in table 5, we observed that the DHSSs from the first two
data sets (the one identified by DNase-chip in the
GM06990 line and the one identified by DNase-chip in
the CD4� T cells) are significantly enriched in the detected
hotspots. The other two data sets are rather small, and
correlations with DHSSs therein are not significant.

In yeast, the hotspots that require open chromatin
structure, which usually show DNaseI hypersensitivity,
have been termed “b hotspots.”36 The significant corre-
lation of the detected hotspots with DHSSs we observed
suggests the existence of similar b hotspots in humans. If
we take all DHSSs in the four groups of data together, they
overlap with 26 hotspots among the 172, which indicates
that ∼15% of the hotspots in humans could be of the b

type. It is interesting to note that, among the seven hot-
spots that are located at promoter regions, three also over-
lap with DHSSs where cis-regulatory elements are known
to be abundant.

Discussion

In this article, we have presented a new method for de-
tection of recombination hotspots, its validation with sim-
ulation and experimentally verified data, and its appli-
cation to the HapMap ENCODE data. We introduced a
TWPLL in the method and adopted models that allow
multiple hotspots in a region. Simulation experiments, as
well as validation with the two human genome regions
that have available sperm-typing data, show that the
method is comparable to the best methods, with regard
to the detection power and false-positive rate. In addition,
the proposed method is computationally fast and can
work on both phased and unphased data.

The precision of our method in locating hotspots can
be affected by the SNP density, which is high in our study.
When the SNP density is low, hotspot locations cannot
be determined as precisely, and their lengths should not
be limited to 2.4 kb. This can be tackled by adjusting the
detected hotspots in the following way. Suppose a hotspot
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Table 5. Correlation between Detected Hotspot Positions and Genomic Features in the HapMap
ENCODE Regions

Feature

Mean Occurrence or Average Value

Enriched or Depleted
in Putative Hotspots P

In Putative
Hotspots

In Random
Hotspots

Basic sequence features:
G�C content .432 .400 Enriched !.0001
No. of CpG islands 10 7.78 … .2587

Genomic repeatsa:
All families of repeats .396 .456 Depleted .0014

Alu 143 156.5 … .2175
L1 117 149.7 Depleted .0143
MIR 118 90.1 Enriched .0061
Simple_repeat 78 63.9 … .0671
L2 90 63.9 Enriched .0041
Low_complexity 77 57.7 Enriched .0180
MaLR 56 50.2 … .2532

RefSeq genes and related features:
Gene regionsb .2790 .3913 Depleted .0009
Exonic bases .0244 .0228 … .3863
UTRs (5′ � 3′) .0089 .0127 … .3288
DHSSs:

Sites in DNase GM069 Chip 26 13.1 Enriched .0031
Sites in DNase CD4 Chip 24 13.0 Enriched .0185
Sites in DNase CD4 MPSS 4 2.5 … .2445
Sites in DNase CD4-act MPSS 4 2.7 … .2889

a Only families of repeats that occur 1500 times in the studied regions are listed here. All other repeat families are
not tested significantly related with the hotspots.

b Gene regions are calculated as 1 kb upstream of the first exon to 1 kb downstream from the last exon.

(�2.4 kb) is detected whose starting location is between
SNPs i and and whose ending location is betweeni � 1
SNPs j and ; we adjust its location to be from thej � 1
position of SNP i to that of SNP . We did simulationj � 1
with ∼0.7 common SNPs per kb, similar to the SNP density
of phase II of the main HapMap project. After the above
adjustment to the hotspot boundaries, the power is ∼59%
for each population, with the same false-positive rate dis-
cussed above. The average position offset is ∼1.5 kb, and
199% of detected hotspots cover the centers of true hot-
spots in each population. Therefore, the method can
surely be applied to phase II HapMap data. When SNP
density is too low—for example, 0.2 common SNPs per
kb—our method is not recommended.

Another issue is the choice of N and in TWPLL. Sim-qk

ulations show that our method is not sensitive to either
of them. For the data we used, , 7, or 9 results inN p 5
almost the same power, and, for , andN p 7 q p 1/kk

perform comparably. So, the choice ofq p 1 � (k � 1)/Nk

N and is not so critical within a certain range, and weqk

suggest that and is generally a good choiceN p 7 q p 1/kk

for most data sets.
When N and are fixed, the key parameter to be de-qk

cided is the threshold T, representing the trade-off be-
tween power and false-positive rate. Simulation results
show that T can be affected by the SNP density and sample
size. A lower T should be chosen for lower SNP density or
smaller sample size, to give the same false-positive rate.
For example, is appropriate when the SNP densityT p 19

decreases to the level of the phase II HapMap project, and
is proper if the diploid sample size is 50. BecauseT p 23

of the speed of HotspotFisher, it is straightforward to cal-
ibrate the choice of T for a specific set of real data by
applying HotspotFisher with different values of T to data
simulated with features that match the real data.

A single background rate in each region is assumed in
our model. In practice, the background rates may vary
across the chromosome, so a long chromosome segment
should be divided into smaller pieces, to detect hotspots
in each piece. Analysis of very small regions would lead
to imprecise estimates (large variance), whereas analysis
of regions that are too big may lead to poor estimates due
to biases from the assumption of a constant background
rate. We suggest 100–500 kb to be a good range of choices,
and 200 kb may be chosen as the default.

In all our simulations, we applied the proposed method
to unphased data directly. An alternative strategy is to
detect hotspots on the basis of the haplotypes inferred
from genotypes by use of software such as PHASE.31,32

Since adopting such an additional step often increases the
computational cost substantially and since our method
can directly handle unphased data, we did not use this
strategy in our study. However, it is recommended that
others use haplotype data if the data are highly reliable;
otherwise, the use of genotypes directly is reliable and
convenient.

From another perspective, because the method can work
on unphased data efficiently, it can also be incorporated
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into some haplotype-inference methods. Many current
methods for inferring haplotypes from genotypes assume
no recombination or minimum recombination events.
Users may use the proposed method to detect recombi-
nation hotspots first and then use those haplotype-infer-
ence methods to infer haplotypes between each pair of
adjacent hotspots. This strategy would increase the ac-
curacy of haplotype inference, especially when applied to
long genomic regions.

Applying the proposed method to the HapMap EN-
CODE data, we identified 172 putative hotspots in the 10
500-kb regions. We observed that hotspots are not com-
pletely identical across the three populations. Since there
are many factors that can affect the prediction in the pop-
ulations, the observation may indicate the existence of
population-specific hotspots and/or that the intensity of
the same hotspots in different populations is different, but
more data and further experiments are needed to draw a
conclusion on this point.

Evidence is accumulating that meiotic crossovers in hu-
mans and in yeast may share similar mechanisms—for
example, similar short lengths of hotspots and similar cor-
relation with G�C content.34–36 In yeast, hotspots share
no particular sequence features.34–36 In humans, a recent
report has shown that the presence or absence of at least
some hotspots is not controlled by the sequence or poly-
morphisms.43 An important determinant of the b-type
hotspots in yeast is the open chromatin structure, and our
results show that a significant portion of human hotspots
may share a similar mechanism.
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˜lijun/
LDhat version 2.0, http://www.stats.ox.ac.uk/˜mcvean/LDhat/
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